

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

[image: Drawing] Jsync

[image: _images/jsync.svg]Build Status [https://travis-ci.org/mbouchenoire/jsync]
[image: _images/badge.svg]Coverage Status [https://coveralls.io/github/mbouchenoire/jsync?branch=master]

Jsync is a lightweight Java library focused on providing simple methods to deal with concurrency before the Java 8 Stream API.
This library is mostly influenced by the .NET Parallel Class [https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel(v=vs.110).aspx] and async.js [https://github.com/caolan/async].

Methods

parallel(Runnable[] runnables)

Call each given Runnable [http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Runnable.html] asynchronously while beeing synchronous itself.
You can pass as many runnables as you want using varargs [http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html], or even provide them within an Array / Collection.

Jsync.parallel(
 new Runnable() {
 public void run() {
 // Do some long task here...
 }
 },
 new Runnable() {
 public void run() {
 // Do some other long task there...
 }
 },
 new CustomRunnable(args) // or implement your own runnables
);

forEach(T[] items, Consumer<T> consumer)

Apply each value in items to the Consumer.
Each execution of Consumer#accept() is called asynchronously while the forEach() method itself is synchronous.

String[] strings = new String[] { "hi", "jsync" };

Jsync.forEach(strings, new Consumer<String>() {
 public void accept(String arg) {
 // each execution of this function is asynchronous
 System.out.println(arg);
 }
});

T[] map(T[] items, Function<T, R> function)

Produces a new Array / Collection of values by mapping each value in items through the Function.
Each execution of Function#apply() is called asynchronously while the map() function itself is synchronous.

String[] strings = new String[] { "hi" , "Jsync" };

Integer[] lengths = Jsync.map(strings, new Function<String, Integer>() {
 public Integer apply(String arg) {
 // each execution of this function is asynchronous
 return arg.length();
 }
});

// lengths : [2, 5]

T[] filter(T[] items, Predicate<T> predicate)

Produces a new Array / Collection of values which pass the Predicate test.
Each execution of Predicate#test() is called asynchronously while the filter() function itself is synchronous.

String[] strings = new String[] { "hi", "jsync", "this is too long" };

String[] filteredStrings = Jsync.filter(strings, new Predicate<String>() {
 public Boolean test(String arg) {
 // each execution of this function is asynchronous
 return (arg.length <= 10);
 }
});

// filteredStrings : ["hi", "jsync"]

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

